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Abstract—The equation of the process of non-stationary heat conduction in solid bodies—a new equation
of mathematical physics—is found for a multidimensional case of the migration of isothermal surfaces.
The analysis of the existence and of the uniqueness of the solution of the first boundary value problem for
the above equation is given. The application of the method of perturbations in the kinematic description
of heat conduction to the solution of problems with temperature-dependent thermophysical properties
of the medium is shown. The finite difference approximation of the new heat conduction equation by the
boundary value and explicit schemes is found and the stability condition of the latter is substantiated.
Using these schemes an algorithm is developed to determine the temperature fields and location of the
interface between new and old phases by a computer.

1. INTRODUCTION

THE FIRST part of the present series [1] gives a number
of regularities of the migration of isothermal surfaces
that are applied in practice for determining tem-
perature fields with temperature-dependent properties
of material and boundary conditions. In this case use
was made of the description of non-stationary heat
conduction as spatial-temporal temperature variation
T = f(M, 7). In the presence of phase transition, the
thermal state of phases is determined in the form of
the dependence T = f(M, t) and the Stefan condition
is formulated in the migrations of the isothermal sur-
face separating them. Naturally, there occurs an idea
on the possibility of treating and solving the problems
of non-stationary heat conduction with and without
phase transition in the migration of isotherms. The
advantages of such an approach to the problem of
non-linear heat transfer are shown in what follows.

2. PROBLEM FORMULATION

Consider a quasi-linear equation of non-stationary
heat conduction

C(T)%? = div [A(T) grad T] N

which will be rewritten in the form

oT oTY
C(T)a—r = MV T+ 1(T) [(5)

T\ oTY ,

Its solution T = ®(x,y,z,7) may be presented
implicitly as F(x, y, z, t, T) = 0, where

F(x,y,z,7,T) = ®(x,y,z,7)—T. 2)

Assume temperature T, along with time 7 and co-
ordinates y, z, to be independent variables, and co-
ordinate x to be an unknown function

x=x(y,z,7,T) 3)

monotonously dependent on 7.

Calculate the derivatives dx/dt, dx/0y, 0x/dz and
0x/0T using the rule of the differentiation of the
implicitly assigned function, then we obtain on the
basis of equation (2):

dx  OF[oF 0@ [é®  OT |oT
ot ot|dox  ot| ox ot éx

dx aF/aF_ acp/a(p_ aT/aT

oy aylex oyl ex  ayf ox
0x  OF [oF Q? 0_(13__ 6_T gz
0z 8z/ox  8z] ox oz ox
ox oT

aszl/ﬁ' @)

Here it is taken into account that J0F/dt = 0®/0r,
etc., since 7 is now an independent variable and
x=x(y,271T).

Using set (4) as a basis one may write sequentially

oF  x. OF x, 9F  x, OF 1
ot xyp dy  xy 0z xp 0x Xy
(5
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C(T) volumetric heat capacity {Jm "K ]

ly half-thickness of a plate, cylinder
(sphere) radius [m]

L volumetric heat of phase transition
[Jm 9

m coefficient of the body shape equal to one,

two or three for a plate, cylinder or
sphere, respectively
q heat flux density [Wm ™3]
Tix, v.z, t{T{M. 7)) current temperature [K]

NOMENCLATURE

T, surrounding temperature [K]

Ty initial temperature [K]

T, solidification (melting) temperature
[K}

x, v,z Cartesian coordinates [m].

Greek symbols
o heat transfer coefficient [Wm * K]
AT) thermal conductivity [Wm™ K™}

T time [s].

Then, using these equations and calculating the
derivatives of F',(x, y, z, 1, T) and F{x, y, z, 1, T)
with respect to y and z, respectively, we obtain

d F’ F' +F" x| ¢ )C';
N ;== ‘3 Xy = — 7 /_
d y ¥ ¥ ¥ ¥ ey \ x5
d ¢ {x.
— Fi = F’:’: +F;.X:. = (A‘::') A (6)
da oz -Yy’

Calculating also the derivatives of the complex func-
tion F(x, y, z, t, T) with respect to y, x and 7, we

have
dF’—"b I dF,_ﬁ 1
dy” * 7 oy Codr YT ez \xy)

d —F = (! Fir=0 (N
dar oT\xy) T

It follows from equation (7) that

a1 1 e /1y,
roeali)- 5 ﬁ() oo

Lo 121\,
re-gl) -G () ®

" I (1
Fo= g arl) 1o
Having substituted the values of F7, and F7, into

equation (6), we obtain

P E A N NN L T L
¥ Sy \xy) T Tléy\xp Xy 0T\ x5

|

(1)
IR YA EYAAN RN
§ 0z \xy oz \xy) x5 or o
(12)
Replacing the derivatives ¢2T/dx? = 3*®jéx?, 0°T/oy?

= 0*®/dy?, 3*T[32* = 3*®/dz* 0T ot = 0®/for,
8T /ox = d®/ox, dT/oy = 8@{6}, 0T {0z = 0®/0z in
equation (1) by the expressions (5), (10), (11) and
(12), we have as a result of all transformations an

equation with respect to the velocity x; of the
migration of an isothermal surface toward x:

!f

(x )

C{Tx, = M) {r',’, N i [H—(x )

O 2 }

A(T)
-=

+(xD. (13)

Equations with respect to the velocity of the
migration of an isothermal surface toward y and z are
obtained from equation (13) by the substitution of x
into y (and y into x) and x into z {and z into x),
respectively, and have the form:

[1+()°

C(T)y. = AT) {y,’é_wyé’ﬁ o g—-

+() - *—-(y’y%’r%y vr)}

-S04 0000 (4
C(TYz, = MT) {z;'.‘,,+z,’\-x+ (—7) [1+(z)*
+(z)%]— (~ 4;,+,:~’7’r)}

4 .

~ ) D

Operating analogously to the above one may show
that for the practically important case of one-dimen-
sional distribution of heat in a plate (m = 1), cylinder
(m = 2) and sphere (m = 3) the equation for the time-
variation of the isothermal surface location calculated
from the symmetry centre (axis, plane) is
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oT>\oT
., oxY' (m—DAT)
—Aajcﬁ> - EEE a6

Note that equation (16) was first obtained in 1968 [2].
Analysis of relations (3) and (13)-(15) allows the
determination of the effect of geometric properties of
isothermal surfaces on the formation of temperature
fields.
Thus, for instance, equation (3) in the form

2 -2
aT%§=Mn6x<&>

x=x(pz1T)
or
F(x,y,z,7,T) = x(y,2z,1, T)—x =0

prescribes a two-parametric family of surfaces S, ,,
the length of the normal vector to which is equal to

VFI? = 1+(x})? + (x)?

{(—1, x/, and x/ are the components of this vector).
The presence of the co-factor |VF|? and the functions
X%, X3, X, and x7. on the right-hand side of equation
(13) indicates that the projection of the velocity vector
of the isotherm migration toward x is affected not only
by the temperature gradient (x7) ' and its variations
over T, y and z, but also by the curvature of an
isothermal surface in its sections by the planes normal
to the axes Oy and 0z.

It is expedient to note also that the value
{14 (x,)+ (x2)?]"? relates the element of the area Ag
of an isothermal surface with the area of its projection
Ag, onto the plane y, z according to the formula

Ao = Ac[1+(x,) 2+ (x1)4] "2,

3. ANALYSIS OF THE EXISTENCE AND
UNIQUENESS OF THE SOLUTION

The analysis of the existence and uniqueness of the
solution will be conducted as applied to equation (16)
for the particular case of a plate (m = 1) with constant
thermophysical properties C(T) = 1, A(T) = 1. Here
the first boundary value problem is written as

X, =Xpx)72 >0, d<T<e (17)
x(T,0) = o(T) (18)
x(T=f(©,1)=0 >0 19)

X(T =f3(1),0) =b, 7>0. (20)

Assume that d < f)(t) < T < f5(1) < e represents
a curved band 7 >0 and f,(z) < T < f5(1) a rec-
tangular band t>0, 0<&<1, where ¢=
[T—f1@VLf2(0)—f1(®)]- It is mutually unambigu-
ous since f; (1) —f5(r) # 0. In this case the curves T =
f1(v) and T = f,(z) respectively change to straight
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F1G. 1. Reflection of the curved band t > 0, /(1) < T < f5(7)
to the rectangular band 1 > 0,0 < £ < 1.

lines ¢ = 0 and £ = 1 (Fig. 1). Then instead of (17)—
(20) we obtain a new problem:

X, = Xl (x) T FE D), >0, 0<E<]

(21)

x(£,0) = ¢,(%) (22)
x(E=0,1)=0, 7>0 23)
xE=11=5b 1>0, (24)

where
F&o={f1fi=fif>
+E =D +HAIS = D= )2

Equation (21) will be analysed for f, = const. and
f> = const. written in the form

0 1
X, = Xpr(xy) * = 6‘7:(— x>
A

Equation (25), with a diverging main part, is not
uniformly parabolic and falls out of the class of equa-
tions considered in refs. [3-6]. It may be stated with
high probability that this equation has no a priori
estimates (|x|, |x7|) and the problem on the existence
of the solution of the first boundary value problem
(17)—(20) involves the problem of the selection of
initial and boundary conditions.

Proof of the uniqueness of the solution of problem
(21)-(24) (or, similarly, problem (17)-(20)) in the
class of the functions will be determined below.

Assume that problem (21)—(24) has two solutions
x, and x,. Then for the difference between these solu-
tions, w = x, — Xx,, equation (21) becomes linear:

25)

Wi, hee (X e — X5 )W) w
We= ’(x,f:)z B xzs(ix(ll,:;i (x’zj)i;‘é —F&) X1X2
(26)
and the initial and boundary values of w vanish:
w(¢,0) =10 (27
w(é=0,7)=0, >0 (28)
wé=11=0, 1>0. 29)
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Designate the set of functions (¢, t} which were
determined within the range 1 >0, 0 << <1 and
which have continuous partial derivatives [, ¥}, ¥;
(with (1%)" > 0 within the band 1 > 0, 0 < { < 1} as
M. Then the following confirmation will be valid : if
functions f,(7) and f5(t) are constantly differentiated
fort > 0and [ f, (1) —f>(1)]* > 0, then the solution of
problem (21)—(24) in the class M is unique.

The proof of this confirmation follows from the
fact that, based on the principle of maximum, the
boundary value problem with respect to w has a zero
solution only [7]; that is, properly, the essence of the
theorem of the uniqueness of the solution of the first
boundary value problem for a linear parabolic equa-
tion.

‘Improving’ equation {17) to the form

x,=[l+s (X’T)z]xlfr/[gz +(x7%) z]’ (30)

where &, and &, are positive constants, the uniqueness
and existence of the solution of problem (30), (18-
(20), may be proved.

4. APPLICATION OF THE PERTURBATION
METHOD

In ref. [8] the application of group analysis in
obtaining both invariant solutions of the heat con-
duction equation with the migration of isothermal
surfaces and invariant solutions of boundary value
problems of this equation is considered in detail. It
was found that construction of these solutions is
especially facilitated by a new treatment of heat transfer.

The description of the process of non-stationary
heat conduction with the migration of isothermal sur-
faces allows one to apply the perturbation method
to the solution of problems with temperature-
dependent thermophysical properties.

For instance, for a plate (m = 1), hollow cylinder
(m = 2) and hollow sphere (m = 3) (one-dimensional
case) the problem of heat conduction with boundary
conditions of the first kind in dimensionless form is

C(Mx(xy)2x, = ATxxpr— X (T)xxy
—m—DATHxPE 1>0, a<T<bh (3D

x(1,0) = f(T) (32)
X(T=a1)=1 1t>0 (33)
MT=h1)=1+4A, >0, (34)

where x(7, t) is the location of isothermal surfaces
on which the temperature T = idem is prescribed,
7 is the dimensionless time, C{(7) and A(T) are the
temperature dependences of the relative values of
volumetric heat capacity and thermal conductivity.

It is easy to see that problem (31)-(34) corresponds
to non-stationary heat conduction in the bodies men-
tioned when the initial temperature distribution T
along the coordinate x is assigned and on the bound-
ing surfaces with the coordinates x = land x = [ +A
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constant values of temperature ¢ and A, respectively.
are maintained.

Assume that the functions C(7) and A{T) have the
form

C(T) = 1+eC(T), AT)=14+84(T), (35

where € ,{T) and £,(T) are limited within the section
{a, b}, and ¢ and & are rather small.

We seck the solution of problem (31)-(34) in the
form

x(T,7) = i Z x; (T, 1)&'d

-0 -0

(36)

Substitution of the functions C(7T) and A(T) and of
the series (36) into equation (31) yields

(1 +sC‘,(T))< ‘Z x,-,-e‘6~’)< i x},a‘é’)( i x,je‘(if)

Q=0 ii=0 ii=0

_ +<§Z,)< y x{,-s"éj>( Y x;;a'sf)

ij=0 Ljm=

o0 o
— 64 ( ¥ x,-,x%)")( Y x},a’ﬁ’)
ij=0 =0

—(m~1)(1+5z,)( S x;,.g"éf). 37
ij=0

Here X5., should be understood as X2, T,
Xy = 0x;/0v,  xj = 0x,/0T,  xj= 8%x,/6T*  and
= 84,/0T.

Then, equating the terms with equal powers £8° we
obtain an infinite system of equations for determining
the unknown functions x;(7, 7). For series (36) to
satisfy problem (31)—(34) the following conditions
must be valid :

oL

X(T,0)= Y x,(T,0068 = f(T)

Lj=40

(38)

@)=Y x@0Ed =1, 1>0 (39

Q=0

x(b,7) = Y x,;(b,7)d =1+A, >0 (40)

Q=0

Assume that these conditions are fulfilled at

Xoo(T,0) = f(T), x(T,0)=0 for i+j>1
Xoo(a,7) = 1, X {a.1) =0 for i+j=1
Xpolb 1) = 14+A, x,(b,1)=0 for i+j=1

We determine the functions xgg, X, and x,,. For xg
there is the boundary value problem with the non-
linear equation of the process:

-’Cno(xlou)z-’eoo = XggXgo — (M1~ ‘)(X’oo)q (41)
xgo =f(T), =0 42)
Xgola,7) = 1,

>0 (43)
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Xoo(b,7) = 1+4, (44)

coinciding with problem (31)-(34) at C(7) =1,
A(T)=1 in the ordinary formulation when tem-
perature 7 is a dependent variable and coordinate x
and time t are independent variables. The cor-
responding boundary value problem is linear and
its analytical solution is derived in refs. [9, 10], with
the use of which the unknown quantity x,(7, 7) is
obtained.

The boundary value problem for determining x,,
becomes linear:

1>0,

’ 2 . 7 2 s z
Xo0{X50) " Xo1 + XoelX01 (x50} " +2X00X50%01]
. " 1" - 7" T ’
= XgoXg1 +X01 X090+ A1X00X50 = 41X 00X 0

= (m=1D2x4x% + ‘I] (x00)%]  (45)

xo{T.0) =0 (46)
xo{a,7) =0, >0 @7
Xp(b,7) =0, 7>0. (48)

The boundary value problem with respect to x;, is
also linear:

Xg5(X50) "X 10+ Xoo[*10(x50)” + €1 (x00) *Xg0

~ UV 1" "
+2X00X00X 0] = Xo0XTo — 2(mM~1)X00X 70+ X 10X00

(49)

xo(T0 =0 (50)
xp{a, 1) =0, >0 (51)
Xio(b,1) =0, >0 (52)

The question of the convergence of the functional
series (36) is unsolved because its solution requires
the knowledge of exact estimates of the values of
|x;(7, 7)}, thus making it a complex problem.

If it is assumed that there exist positive constants
A, Band M so that

max |x,(T,1)| S A'B'M, ij=1,...,

asT<h O<1<1, (53)

then it can be easily proved that at rather small ¢ and
d, series (36) converges and with accuracy up to an
infinitely small quantity having order higher than
g2 4&8+ 5% so that the solution of problem (31)-(34)
may be presented in the form

X(T,7) = xg+6x15+0xg;. (54)
In fact, equations (36) and (53) yield

N xyEd

ij=0

< S Pxl xJel o)

e

<M 3 |BIAS. (55)

Lj=0

Series X5_ o|(Be)|'|(A8)|Y converges absolutely when
|Be| < 1, |48} < 1. Then, from the comparison cri-
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terion and inequality (55) the proof of the advanced
assumption is obtained.

5. APPLICATION OF THE METHOD OF FINITE
DIFFERENCES

The difficulties of constructing effective methods
for computer solution of the problem with substance
phase transition when the position of the interface
between old and new phases is found from the Stefan
conditions are well known. Moreover, when solving
the problems without phase transition by computer
a substantial portion of time is spent on selecting
thermophysical characteristics of the body material
from the input arrays on each time layer. The latter
confirmation is based on the results of control com-
puter calculations, made by the author, of the problem
of a non-stationary temperature field in an unbounded
plate (one-dimensional case) in which the space step
was taken to be equal to 1/20 of the plate half-thick-
ness and the time step amounted to AFo = 0.005. The
initial temperature was assumed to be equal to zero
and the temperature of the boundary during the entire
process was taken to be equal to unity. The arrays of
A= A(T) and C = C(T) for values of T (with each
value of T, A = 1, C = 1) were input to the memory
of an ES-1050-type computer. Then the system of 20
algebraic equations with respect to unknown tem-
peratures at 20 body points on each time layer was
solved which corresponds to the finite difference
approximation by the implicit absolutely stable non-
iterative Laasonen scheme. In this case, in the first
version of the program the selection of thermo-
physical properties from the input arrays with linear
interpolation between the node values of 4 and C
was envisaged, while in the second version this pro-
cedure was not foreseen because the values of 4 and
C were taken to be equal to unity in the corresponding
equations of the above mentioned system. The cal-
culations performed showed that the first case requires
approximately 20% more computer time than the
second.

With the use of iterations when verifying thermo-
physical properties at each time step the computer
time spent increases in direct proportion to the num-
ber of iterations.

"It is necessary to note the fact that traditional
methods of solving heat conduction problems yield a
good deal of excess information in those cases when
it is necessary only to follow the behaviour of some
isothermal surfaces.

Expensive computer time expenditure and accumu-
lation of excess information when solving the prob-
lems without substance phase transition may be
avoided and, moreover, effective algorithms for solv-
ing problems by computer with substance phase
transition may be constructed by using the descrip-
tion of the process with the migration of isothermal
surfaces.
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5.1. Construction of finite difference approximation

Jor the heat conduction equation with the migration of

isothermal surfaces

The difference scheme for computer solution of the
above problems in a practically important case of one-
dimensional heat propagation over a plate (m = 1),
cylinder (m = 2) and sphere (m = 3) when the equa-
tion of the isothermal surface position variation

= idem with time 7 calculated from the centre of

symmetry is

¢
C(T) ot (‘Tl:

Furthermore, the coordinate x will be calculated from
the surface bounding the body (Fig. 2). Then with
the characteristic dimension /, (plate thickness, outer
radius of solid or hollow cylinder. sphere), equation
(56) takes the form

¢
0t FT

/L(T):l (m— l)/(T) (56)

ox/oT Ty

C(T) =

’(T)]+ “DAD s

0x/oT Iy~ x
Following ref. [11], we integrate equation (56") over
the variable T within the limits from 7,_,,=
0.5(T+T,_,) to T; 1,,=05(T,+T,,,) and over t
from T to 1% ", where i is the spatial layer number
and n is the temporal layer number:

T e G
[ e
- o 0t
O ) AM(T)
_J ”7 (T[ avjor |47 (&

(1)

TH . T+ 1 /,.L T
+(m—1) —
T2 o Ly —x

Then, we have, successively, for the left-hand side of
equation (57) within the limits of a temporal layer
with the duration of At = "+ — "

f{) C(T)ﬁdr— C(T)J W—dr

dr]dT. (57)

= C(T)[x(T, 7"+ ") —x(T,x")]:
Io E

e Xie
X
Xia

0 +

Thst Tt Ti Tiy Ty

T

F1G. 2. Plot of x as a function of 7.
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__\.( T, ‘L'(”’)] d7T ~ [\( T,. it I))

—x(T, Tw)]( Tivrn— TG
= 05(‘1("5” Fo —xf"’)(TH 17 T: l)ﬂ
where

Tivia
C =J‘ C(MAT( T 12— Ti12)
T

If the last integral is not taken and an approximation
is made following the rule of rectangles, we have

C, = C(T).

Now consider the first integral from the right-hand
side of equation (57) :

R MT)
J,ET[ rx/FT:IdT
MT) AT)
T LoxfaT . |oxfoT |y .

MT) MTi )(Ti=T,_ 1)
ox/oT §r,_ . x(r T)—r(r 1)

Ao Ti—

T x(@ T)~x(, T,)

[J(T)} AT )T = T)

ox/0T jr., ~x(r, T :,)7— W‘EWT)

ll)

A1+l 7( T)

’C(‘L’ T,H)—vr T)

This yields, successively :

 (n+ 1) Tii1n 0 A(T)
f UaT[ syt 4T (%
NCESH 2, 17(T T, i)
NLM (1, T)—)c(f ; |)dr
jr'm” ‘,_',7177(?-'{*‘ - T) d‘f
. x(e +|)_“ x(t, r)

J A ggrm D 4

m x(t, T)—x(t, T,_ )

=i a2ATi— T,n)J \’(7: T)ilx)(‘cﬁ )
, ]2(T T )(T(f1+ll_,r(:7))
x[t (11)+0(T(n+1) 7™y, T’_]' o
—X[‘C(n)—f'()(‘[(n+])—T{n)). T: ]]~

T aT =T
) x(r +.)——x(r T)
AT — T)(z"+ D —1")

- X[z +0(z* v —T(";)’ Tiii]
—x[t" + 0zt D — 1), T
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At 6 = 0 we obtain an explicit approximation of the
initial differential operator:

int 1) T -
iz M)
f U a"r"[‘ ax/ar]‘”"}‘“

- A nz(Tf" T, DAz _ Ay I/Z(Ti+ = T)Az
X x|

>

xx(i)l —x{

and at 6 = 1 its implicit approximation :

r(n+|) T’+I’: 6 A(T)
o ALl

- i T =T, AT _ AT —THAT

(n+1) (n+ 1) (n+ 1 +1)
X; X Xit ) —xf"

The last integral from equation (57) is calculated in
the following way:

T, n+ 1)
42 T /{ T
j [j () dt:IdT
Tz < 10 —X
T n+ 1
i+ T dz
N LI,: l:;L(T) J;"’ lon‘x:ldT’

then with the approximation by the explicit scheme

we have:
U de At
o ly—x [px™(T)

and with the approximation by the implicit scheme :

1 d‘[‘ A’E

o ly—x ly—x"tN(TY
Then we obtain, correspondingly, with the explicit
approximation scheme :

Tivin A Tivii2 ™ndT
J A(T)——%dr:ATJ 1)
lo—x

—
Ticii2 Tisin2 10 x

Atl;
X I —xm (Tivr2—Tizyp2)
0—Xi

TH»I"Z
/1:' = ﬁ A(T)dT/(Ti+ l/2_7-‘i~1/2)'

=172

If the last integral is replaced by A(T) (T 1jo— T 1j2),
then we have 4, = A(T}). As a result we obtain with
the explicit approximation:

r” li)»(T) f} de/d, —x)}dT

~r AT, 12— Tie 1/2)/(10 _x(n))

and with the implicit approximation :

T L+ 1)
J [A(T) J( gl —-x):ldT
Tivn 28

= LAT(T o — T yp2) U —x+ D). (58)

Substitution of all of the results obtained in equation
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(57) after elementary transformations by the explicit
approximation scheme yields

C_x}"H)_x;('n) _ 21;—1/2(7",'_7".'4)
' At (xz(n)_x?i)l)(’l-'i+l_7—'i—l)
2812(T = T) (m—1)4,
) () W (59)
2 =T = Ti20) ly—xi"
and approximation by the implicit scheme gives
C_XEHI)‘XI('") - 2/11v|/2(Ti“ T, )
' At (x+ D — XN (T =T )
_ 2)~i+ l,’Z(TH- 1 Tz)
(x:(n++1 D —x{rt l))(Ti+ —Ti21)
(m—1)4;
10 _x§”+ 1) (60)

5.2. Analysis of the stability of digitization schemes

Computer solution of the finite difference analogue
of equation (56”) with its approximation by explicit
or implicit schemes is possible when stability of cal-
culations is provided. This requires the establishment
of such a ratio between the time steps At and tem-
perature AT at which the error of the method remains
small during calculations. Determination of the con-
dition of the stability for the equation under con-
sideration by familiar methods [12] is very difficult
due to its non-linearity. It can be shown that the
analysis of the solution scheme stability may also be
performed in this case.

In fact, consider equation (56") at m=1, C(T) =
const., A(T) = const. and replace x by u as in the
majority of works on this problem.

Then we have

gau(r,T)_ 0 i B 625
A ooer 8T N

(61)

‘Freezing’ the multiplier (#7)~ > on the right-hand side
of equation (61) and denoting it in terms of D, we
obtain

Coux,T) ﬂ
T Tary

A Ot 62)

As is known from ref. [12], the condition of explicit

scheme stability for equation (62) is

PA P
c@an:S™ % can

5 <3(up) 7 (63)

The finite difference analogue of the right-hand side
of equation (63) may be obtained by transforming
equation (61) in the following way:

(Ti-H_Ti
AL m (
uiil_uin)

T,..\T, 2
uﬁn) _“,("L)l T.,.,—T_,

Cu" ) —ym
A At T
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In equation (64) the co-factors

(uﬁ’i’; —u”

TLH“T' T

u(-’” u(n) u(n) u{n) 1
<Tl+l r x T Tl 1
are the finite difference analogues of &%u/6T? and
(#y)”* = D in equation (61).

Then, based on equation (63) and the con-
siderations made, we obtain the following condition
of explicit scheme stability for equation (62) and,
consequently, equation (61):

(64)

/ i R
%Af<'*> < gmin (T, ~T)°

X min (u}i)' —u? u? —u l) (65)
i T, =T, T—T; .,

With the temperature-dependent thermophysical
properties, condition (65) takes the form

1 C N
A < 1 (T, —T)°
u(n) u(n) u(n) u‘"’,\
><mm o (66)
<T.+1 T, T—T,

where C,., and A, are the minimum bulk heat
capacity and the maximum thermal conductivity
within the range of temperatures on the nth time step.

It is easy to see that condition (66) imposed on the
time is very ‘rigorous’ though it guarantees stability
of calculations by the explicit scheme.

A less burdensome condition imposed on the quan-
tity At™ may be obtained by applying the maximum
principle to equation (59), written in the form

g- y}n+ h ""ur('") _ a(”) “:T: _*(f’)
4 AT ' T;+ 1T
1 ) 2
- k]
Ti_Tf—l n+l_ﬂ—l
where
o Toi=T T=Ty

u(ﬂ) Ii(ﬂ) a(n) u(") -

Let 64 be some variation of u; on the nth time layer.
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By ‘freezing’ ', we obtain the following equation
tor Sul™ "

C Syt - )(i" _ g bufi’z - (}uiu
J AT ! T,+I T
(n) ()u"" ) 2
Ti—T,.. C )T =T
and
S = 2a AT Aoul) |
' (Tf+|_Ti)(Ti+l_Ti 1)C
[ 2a
+i1- ’
(T —THT s —Ti0)
{(n) ()
2a; ‘ ”]Ar /15 (")
T(T-T, )T, ~T,. )| C
Za‘"’Ar‘”’Aéu‘"’

T ST T T
or

Sl = B 0w, + B0u® + Bou™,.  (67)
In equation (67), B, > 0,8, > 0and 8, +B:+B.= L.
To the stability condition of the solution of equation
(67), B, = 0, there is equivalently the fulfilment of the
inequality

A a"A™ ( 1 1 ) ,
e + N S 3
C(T =T J\T—T_, " T, —T,
or
A a 1
- At ! ;
™' m"‘"[r.-ﬁ-—n,l(m,—r,-

+ : <3
T.=T)]7 7

With temperature-dependent 4 and C, condition (68)
takes the form

A ain 1
max A 709 S A B S
Coin m?"[?z“—’n—..; (:f:+,-—7',-

Similarly, by applying the maximum principle to the
analysis of the implicit scheme (60) we obtain its
absolute stability at any At to AT ratio.

5.3. Computer realization of the method

The determination of the At to AT ratio at each
time step, which provides the stability of the solution
by the explicit scheme (59), could cover the problems
of its computer realization if the right-hand side of
equation (59) were divergent. It is non-divergent due
to the presence of (56) on the right-hand side of (59)
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of the sum {m— 1)A(T)/T, thus leading to inaccurate
results [11].

The computer solution of the system of equations
by the implicit scheme does not show the principle
restrictions imposed on the relationship between the
steps At and AT but there arise difficulties due to the
non-linear character of (60).

With computer calculation the first of the above

difficulties ic pvercome hu the annlicatinn of tha oanlit
NEZIRAWAEIVEWT IO U T WA MASRIAW UJ LiiN “yk/‘l\lu“\}il AL Liiw QPIIL

of equation (56), when on each time layer the equa-

tions
oax 8 um
C(T)é}“‘é?[ 6x/6T] 69
e - D) 0

are solved successively using finite differences. The
latter equation may be rewritten in divergent form:

ly~x)?

CmTE = —2m-DT). (1)

In the differential form with the value of the time half-
layer Az, equations (69) and (71) become

C x(’”' Y2y ,C(ﬂ) _ A & -
At T AT\AXUFUD/AT 72)

""J’C;-(H l,’Z)) 2

(o—x"" ") (U

G At

= ~24(m—1). (73)

The operator on the right-hand side of equation (72}
is given in Section 5.1.

The sequence of computer calculations on each time
layer is the following: solve the system of equations
concerned with digitization of equation (72), find
XU (=N, N—1,...,1) and then determine
x{"+ D explicitly from equation (73) using the formula

XD = Iy~ [(lo = x" 1¥)? = 22(m~ DAY/ C] 2.
(74)

Here, the minus sign in front of the square root is due
to the fact that x{"+ /2 < [, and for At — 0 we should
have x{"* " = x{** 2 The system of non-linear equa-
tions (72), expressed in the form

(X§ﬂ+ 1/2y —x?"))(x,("* [¥V4) —X?T} 1,:’2)(xi§tl+l 1/ _‘x§ﬂ+ !/2))

— d (YD _ o 1D 4 p (Ot ”2’—~x§'ﬁ”2’) =
(75)
where
d = A2, 12T =T)
TG ~Tily
b . 2A’C/2..,-_ 1/2(7—',‘_ T'»‘l)
' C(Tiw ~Ti))

is solved by the Newton—Raphson iterative method,
characterized by rapid convergence of approxi-
mations [12].
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In this case it is closed by a difference analogue of
the boundary conditions,

T -7
ENT AN+ 1 +1
/11\1+ 1277 +“("+ )(TN 1 "'T(n ))

(n+l)
X+ 1) ’
XN

(76)

in which with the assignment of boundary conditions

af the firet kind the tamneratieras T Af the hady
AV S FL S 18 l\ill“ fZe%3 u.xuy&.xau.uo 1N+] Ui LIy Uuuy

bounding surface with the coordinate x,. ; = 0 (Fig.
2) coincides with the prescribed function 7"+ ", since
the coefficient of convective heat transfer is assumed
to be infinitely large (x™*" — o0); with boundary
conditions of the second kind, we have """ = 0 and
the density of the heat flux ¢”* " into the body bound-
ing surface is known; in the case of boundary con-
ditions of the third kind, & " and the burrounumg
medium temperature T+ are known and ¢“* " is
assumed to be equal to zero.

The initial distribution of the unknown quantity
xt9 should be known. In the case of uniform initial
temperature distribution it should be prescribed arti-
ficially as non-uniform in a thin layer adjacent to the
body bounding surface, for example, by a quadratic
parabola. When solving a two-phase Stefan problem
on body melting or solidification the initial tem-
perature distribution in the parent phase should be
known and if at the start of calculation there is already
amelted or solidified layer then the initial distribution
should be prescribed in it.

By using the above algorithm, programs for cal-
culating temperature fields in bodies with and without
phase transition of substance were created. Figure 3
gives a schematic diagram of the calculation program
using the implicit scheme of digitization of differential
operators in equation (56"). In the modulus of the
program, bifurcations were allowed by the criterion
of the presence or absence of phase transition and
within each bifurcation calculations on a half-line or
on a segment were separated.

The program was initially tested when solving a
number of model problems of non-stationary heat
conduction in a plate, cylinder and sphere and in a
half-space without phase transition of the substance
with boundary conditions of first, second and third
order.

In this case computational data with the shift of
isothermal surfaces fully corresponded to the data
obtained by the grid method in the traditional treat-
ment of the process as spatial-temporal temperature
variation. On a half-line the data of numerical
caleulations at C=1, A=(1-087)"% 4=
(1-3.2927T+2.8777%? completely coincided with
Fujita’s accurate solutions [10].

For a case with substance phase transition the
known model problem of melting in a half-space was
solved on a computer. The initial temperature of the
solid phase was taken to be 7%} = —1, the phase
transition temperature was — 7, = 0 and the bound-
ing surface temperature was assumed as Ty, , = 1.
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Fi16. 3. Schematic diagram of the program of thermal calculation in the migration of isotherms.

Thermophysical properties in the material solid phase
are C, =1, A, =5 and in the liquid phase C, = 20,
4y = 1. Moreover, the ratio of bulk heat phase tran-
sition, L, to specific heat of a solid phase was taken
as L/C, =0.2.

The coordinates x"*" of the phase interface and
the dimensionless coordinates x{' 7/x"* " for tem-
peratures 0.1, 0.2,....1.0 in the new phase and
x5V ix+ Y for temperatures — 1.0, —0.9,. .., —0.1
in the old phase were printed.

A good agreement between the results calculated
by the implicit scheme of the described two-phase
Stefan problem and the data of the accurate solution
[13] (Fig. 4) indicates the efficiency of the developed
method (the difference between the values of x,,
X1,/X%, Xo./x, and accurate ones did not exceed 3%
though this cannot be explained by the fact that in
our algorithm free convection in a liquid phase was
not taken into account).

Then the model Stefan problem of half-space sol-
idification at 4= C = L = I, when the initial tem-
perature field in a new phase is described by a dis-

T
7'1,11 =10
0.8

0.6

0.4

0.2
Te=00
-0.2

-0.4

-0.6

-0.8

Tpq=1.0

| |
16 20 24

0 04 08

1.2
1
Xi(n” )/XS(IH )

F16. 4. Exact (solid line) and numerical (dashed line) solu-
tions of the model Stefan problem for boundary conditions
of the first kind.

tribution of the type T4 = exp{~—x)—exp{(—5) (bis
the new phase thickness at 7 = 0) and the temperature
of substance phase transition and power of volumetric
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heat release sources are equal to zero, was solved on
a computer using the developed method.

In this case it is assumed that solidification occurs
with fixed heat removal from the outer surface of a
new phase into the surrounding medium (boundary
conditions of the second kind) and from the zone
of phase transition into the old phase, respectively,
according to the formulae

gli-o =expT, gly o =exp(=b)—1

The data of numerical calculation coincided with
the known exact solution for temperature distribution
and location of the phase interface, which have the
form

T =exp(—x+1)—exp (—b), x,=b+1.

It should be noted that the duration of numerical
calculations of the Stefan-type problems by the
developed technique using the implicit scheme turned
out to be two orders smaller than those in the familiar
methods of phase interface ‘catching’ into the grid
node, ‘straightening’ of boundaries, etc. [14-21]. This
allows one to make a great number of variant solu-
tions of casting solidification. The latter point is also
important in numerical study of the processes of sub-
stance phase transition of great duration in a real time
scale.

6. CONCLUSION

Consideration of the process of non-stationary heat
conduction in the migration of isothermal surfaces
made it possible not only to determine its new regu-
larities and specific features but also to develop effec-
tive techniques for numerical-analytical determina-
tion of temperature fields in solid bodies as well as
the location of the boundary between new and old
phases during their melting or solidification.
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METHODE DE LA MIGRATION DES ISOTHERMES DANS L’ETUDE DU TRANSFERT
DE CHALEUR ET DE MASSE EN THEORIE ET EN PRATIQUE—IIL.
DETERMINATION NUMERIQUE-ANALYTIQUE DES CHAMPS DE TEMPERATURE

Résumé—L’équation de la conduction thermique variable dans les corps solides, une nouvelle équation de
la physique mathématique, est trouvée pour un cas multidimensionnel de migration des surfaces isothermes.
On donne I'analyse de I’existence et de l'unicité de la solution du probléme. L’application de la méthode
des perturbations, dans la description cinématique de la conduction thermique, a la solution du probléme
est faite avec des propriétés thermophysiques dépendant de la température. L’approximation par différence
finie de I"équation nouvelle est trouvée et on justifie la condition de stabilité. En utilisant ces schémas, on
développe un algorithme pour déterminer par ordinateur les champs de température et la localisation de
'interface entre nouvelle et vieille phases.
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DAS VERFAHREN DER ISOTHERMENWANDERUNG IN THEORIE UND PRAXIS
DER WARME- UND STOFFTRANSPORTUNTERSUCHUNG—II. NUMERISCH
ANALYTISCHE BESTIMMUNG VON TEMPERATURFELDERN

Zusammenfassung-- Die grundlegende Gleichung tir den Vorgang der nichtstationdren Wirmelcitung in
Festkorpern—eine ncue Gleichung der mathematischen Physik—wird fir einen mehrdimensionalen Fall
der Wanderung isothermer Oberflichen gefunden. Die Existenz und die Eindeutigkeit der Lésung des crsten
Randwertproblems fir die obige Gleichung wird gezcigt. Das Verfahren der Stérungen der kinematischen
Beschreibung der Wirmeleitung wird bei der Lisung des Problems mit temperaturbhingigen ther-
mophysikalischen Stoffeigenschatten angewandt. Es wird die Finite-Differenzen-Niherung der neuen Wiir-
meleitgleichung durch Randwerte und explizite Formulierung ermittelt und eine Stabilitidtsbedingung
fir letztere hergeleitet. Unter Verwendung dieser Formulierung wird der Algorithmus abgeleitet, um
Temperaturfelder und den Ort der Grenzfliche zwischen ncuen und alten Phasen mit Hilfe cines Computers
ermitteln zu kénnen.

METOA NEPEMEMEHNWA U30TEPM B TEOPHMU U TITPAKTUKE
TETJIOMACCOINEPEHOCA. I1. YHUCJIEHHO-AHAJIMTUYECKOE OIMPEAEJEHUE
TEMIIEPATYPHGEIX ITOJEN

AHHOTALKS— Y CTAHOBJIEHO YPaBHEHHE NpolLecca HECTALIHOHAPHOM TEMIONPOBONXHOCTH B TBEPIBIX TEJidX
JUISE MHOFOMEPHOTO CJlyYas B NEPEMEIICHHAX N30TEPMHMYECKHX IIOBEPXHOCTEH—HOBOE YpaBHEHHE MaTe-
MaTH4ecKOi PH3HKM U 1aH aHAJIM3 CYLIIECTBOBAHHA H €MHCTBEHHOCTH PELUCHHMA NEPBO¥ KpaeBOH 3a149H
s Hero. IToka3aHO UCIONB30BAHME METORA BO3MYIUECHHMH 1PH KMHEMATHYECKOM OIMMCAHHM MpoLecca
TEIUIONPOBOHOCTH [UIS NMOJIYYEHUs pELIEHHA 3a[ay ¢ 3aBUCALUMMH OT TeMOeparypbl Temnodu3nyec-
KHMH CBOMCTBAMM Cpellbl. Y CTAHOB/ICHA KOHEYHO-PA3HOCTHAS ANMIPOXCHMALHS HOBOI'O YPaBHEHMA Tell-
JIOTIPOBOJIHOCTH IO KPAcBOH M sIBHOH cxeMaM M 06OCHOBaHO ycJOBHe ycToHumBoctTw nocnenuei. C ux
ACTONB30BAHMEM pa3paboTaH alropATM onpefeseHus Ha IBM TeMnepaTypHbIX NOJICH H MECTOMOJO-
JKCHHS IPaHHLBI pa3fieia HOBO# M CTapoii da3s.



