
inl. J. H<?u Muss Transfur. Vol. 35. No. I I, pp. 2997-3008. 1992 0017-9310,92$5.00+0.00 
Printed in Great Britam Pergamon Press Ltd 

The isotherms migration method in the theory 
and practice of heat and mass transfer 
investigation- II. Numerical-analytical 

determination of temperature fields 

N. M. TSIRELMAN 

The Sergo Ordzhonikidze Ufa Aviation Institute, Ufa, 450000, Russia 

(Received 25 June 1990) 

Abstract-The equation of the process of non-stationary heat conduction in solid bodies-a new equation 
of mathematical physics-is found for a multidimensional case of the migration of isothermal surfaces. 
The analysis of the existence and of the uniqueness of the solution of the first boundary value problem for 
the above equation is given. The application of the method of perturbations in the kinematic description 
of heat conduction to the solution of problems with temperature-dependent thermophysical properties 
of the medium is shown. The finite difference approximation of the new heat conduction equation by the 
boundary value and explicit schemes is found and the stability condition of the latter is substantiated. 
Using these schemes an algorithm is developed to determine the temperature fields and location of the 

interface between new and old phases by a computer. 

1. INTRODUCTION 

THE FIRST part of the present series [I] gives a number 
of regularities of the migration of isothermal surfaces 
that are applied in practice for determining tem- 

perature fields with temperature-dependent properties 
of material and boundary conditions. In this case use 
was made of the description of non-stationary heat 
conduction as spatial-temporal temperature variation 

T = f(M, z). In the presence of phase transition, the 
thermal state of phases is determined in the form of 
the dependence T = f(M, z) and the Stefan condition 
is formulated in the migrations of the isothermal sur- 
face separating them. Naturally, there occurs an idea 
on the possibility of treating and solving the problems 
of non-stationary heat conduction with and without 
phase transition in the migration of isotherms. The 
advantages of such an approach to the problem of 
non-linear heat transfer are shown in what follows. 

2. PROBLEM FORMULATION 

Consider a quasi-linear equation of non-stationary 
heat conduction 

C(T)g=div[J.(T)gradT] 

which will be rewritten in the form 

(1) 

C(T): = A(T)V”T+A’(T) 

+(tJ+(gJ]. (1’) 

Its solution T = @(x, y. z, z) may be presented 
implicitly as F(x, y, z, z‘, T) = 0, where 

F(x, y, z, z, T) = @(x, y, z, z) - T. (2) 

Assume temperature T, along with time 7 and co- 
ordinates y, z, to be independent variables, and co- 
ordinate x to be an unknown function 

x = x(y, z, 7, T) (3) 

monotonously dependent on T. 
Calculate the derivatives ax/&, ax/&~, ax/az and 

ax/dT using the rule of the differentiation of the 
implicitly assigned function, then we obtain on the 
basis of equation (2) : 

-_=I aT. ax 1 aT ax 

Here it is taken into account that aF/& = i?@/&, 
etc., since T is now an independent variable and 
x = x(y, z, 7, T). 

Using set (4) as a basis one may write sequentially 

aF x: aF x; aF x: aF 1 
p=-- -=__ _=_~ _=_ 
aZ x;' ay X;' aZ x;' ax x;' 

(5) 
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NOMENCLATURE 

Cf T) volumetric heat capacity [J m ’ K ‘1 r, surrounding teInper~ttl]re [K] 

I 0 half-thickness of a plate, cylinder Tll initial temperature [K] 

(sphere) radius [m] T, solidification (melting) temperature 

L volumetric heat of phase transition IK] 
[Jm ‘1 fi, ?: : Cartesian coordinates [ml. 

m coefficient of the body shape equal to one, 
two or three for a plate, cylinder or Greek symbols 

sphere, respectively !X heat transfer coefficient [W mm ’ K ‘1 

4 heat flux density [W m ‘j I(T) thermal conductivity [W m-’ Km’] 

T(.u, ,r. z, z)(T(M, z)) current temperature [K] T time [s]. 

Then, using these equations and calculating the equation with respect to the velocity .Y: of the 

derivatives of F:(s, y, 2, z, r) and Fi(.u, y, 2, 7, T) migration of an isothermal surface toward x : 
with respect to y and z, respectively, we obtain 

$ F; = F;z+F;,,x; = - ; (6) z 

C(zyg = A(T) 
1 

x;$.-t-.gz+ (&[l+(.X;)2 

Calculating also the derivatives of the complex func- 
tion Fi(x, y, z, T’, T) with respect to y, .Y and T, we 

have 

Equations with respect to the velocity of the 
migration of an isothermal surface toward y and z are 
obtained from equation (I 3) by the substitution of x 
into y (and p into X) and s into z (and z into x), 

, lyT = 0. (7) respectively, and have the form : 

It follows from equation (7) that 

F’:.,. = &) -:;&(_;;).$ (8) 

Having substituted the values of F’<V and F’G; into 
equation (6), we obtain 

C(T)=; =J J_(T) z;,,, +:‘_ + ?:!:i ]I + (=i, 12 
,‘Y ($.)- 

Operating analogously to the above one may show 
Replacing the derivatives ?2T/&? = d’@/(?.x’, ?‘~/Sr’ that for the practically important case of one-dimen- 
= Parjay’, @T/&Z E dzd)/&‘, iYr/az = a/&, sional distribution of heat in a plate (nz = l), cylinder 
aT/dn z X$~?X, iYF/i+ E a@,@, (?T/Ss E i%Dj& in (nz = 2) and sphere (m = 3) the equation for the time- 
equation (1’) by the expressions (5), (lo), (11) and variation of the isothermal surface location calculated 
(12), we have as a result of all transformations an from the symmetry centre (axis, plane) is 
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c(T)ax = q$!? ax -z 
a7 0 aT* ar 

Note that equation (16) was first obtained in 1968 [2]. 
Analysis of relations (3) and (13)-(15) allows the 

determination of the effect of geometric properties of 

isothermal surfaces on the formation of temperature 
fields. 

Thus, for instance, equation (3) in the form 

or 

F(x,y, z, r, T) = x(y,z,z, T)-x = 0 

prescribes a two-parametric family of surfaces ST, 
the length of the normal vector to which is equal to 

IVF(* = l+(X;,,)‘+(xl_)* 

(- 1, XI and xl_ are the components of this vector). 
The presence of the co-factor IVF] * and the functions 
.$, xl., xllY and xyz on the right-hand side of equation 
(13) indicates that the projection of the velocity vector 

of the isotherm migration toward x is affected not only 
by the temperature gradient (x>) ’ and its variations 

over T, y and z, but also by the curvature of an 
isothermal surface in its sections by the planes normal 
to the axes Oy and Oz. 

It is expedient to note also that the value 
[l+(.X;)2+(x;)~]‘~* relates the element of the area Aa 
of an isothermal surface with the area of its projection 
Ao, onto the plane y, z according to the formula 

Acr = Aa,[l+(~;)~+(x;)*]“*. 

3. ANALYSIS OF THE EXISTENCE AND 

UNIQUENESS OF THE SOLUTION 

The analysis of the existence and uniqueness of the 

solution will be conducted as applied to equation (16) 
for the particular case of a plate (m = 1) with constant 

thermophysical properties C(T) = 1, l(T) = 1. Here 
the first boundary value problem is written as 

x: = X&(.X;.)~ *, r > 0, d < T < e (17) 

.u(T, 0) = rp(T) (18) 

x(T=f;(z),s) = 0, 7 > 0 (19) 

x(T =f;(z), 7) = h, 7 > 0. (20) 

Assume that d <f,(z) < T <f*(z) < e represents 
a curved band 7 > 0 and f,(r) < T <f*(z) a rec- 
tangular band 7 > 0, 0 < 5 ,< 1, where 5 = 
[T-f, (7)]/[f2(7) -f,(7)]. It is mutually unambigu- 
ous since f, (7) -f2(7) # 0. In this case the curves T = 
f, (7) and T = f2(7) respectively change to straight 

7 

0 a I 0 1 

T 5 

FIG. 1. Reflection of the curved band 7 > 0, f, (7) < T <f2(7) 
to the rectangular hand 7 > 0,O < [ < 1. 

lines 5 = 0 and 5 = 1 (Fig. 1). Then instead of (17)- 
(20) we obtain a new problem : 

x: = x;t(X;)~*+F(5,z)(x;)-‘, 7 > 0, 0 < 5 < 1 

(21) 

.y(LO) = (P,(5) (22) 

x(5 = 0,r) = 0, 7 > 0 (23) 

x(5=l,r)=b, T>O, (24) 

where 

F(L7) = {f’, f2 -A .f; 

+w*-f,)+f11(f;-f’,)~(.f*-f’,)~‘. 

Equation (21) will be analysed for f, = const. and 
f2 = const. written in the form 

a I 
x: = x&(x;)-’ = FT (-4 x; . (25) 

Equation (25) with a diverging main part, is not 
uniformly parabolic and falls out of the class of equa- 
tions considered in refs. [3M]. It may be stated with 
high probability that this equation has no a priori 
estimates (lx], Ix>l) and the problem on the existence 
of the solution of the first boundary value problem 

(17))(20) involves the problem of the selection of 
initial and boundary conditions. 

Proof of the uniqueness of the solution of problem 

(21)-(24) (or, similarly, problem (17)-(20)) in the 
class of the functions will be determined below. 

Assume that problem (21)-(24) has two solutions 

x, and x2. Then for the difference between these solu- 
tions, w = x, -x2, equation (21) becomes linear: 

bV% 

wi = ~x;$ 
x;:,w,, ’ -x*d!3 __F(,& 7) & 

(X’,*)w2t)’ 
(26) 

and the initial and boundary values of w vanish : 

w(5,O) = 0 (27) 

W(5 = 0,t) = 0, 7 > 0 (28) 

w(5=1,7)=0, r>o. (29) 
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Designate the set of functions $(<, z) which wcrc 
determined within the range 7 > 0, 0 < t d I and 
which have continuous partial derivatives li/:, I&. $$ 
{with ($J;)’ > 0 within the band z > 0, 0 d f < I) as 
M. Then the following confirmation will be valid : if 
functions .f, (z) and ,fz(z) are constantly differentiated 
for z > 0 and [,f, (7) -,f2(r)]’ > 0, then the solution of 

problem (21)-(24) in the class IV is unique. 
The proof of this confirn~ation follows from the 

fact that, based on the principle of maximum, the 

boundary value problem with respect to IV has a zero 
solution only [7] ; that is, properly, the essence of the 
theorem of the uniqueness of the solution of the first 
boundary value problem for a linear parabolic eyua- 

tion. 
‘Improving’ equation (17) to the form 

.X: = [I fE, (.‘C;.)2]X;r/[Ez + (x;.)2], (30) 

where F! and E> are positive constants, the uniqueness 
and existence of the solution of problem (30), (IX)- 
(20). may bc proved. 

4. APPLICATION OF THE PERTURBATION 

METHOD 

In ref. [8] the application of group analysis in 
obtaining both invariant solutions of the heat con- 
duction equation with the migration of isothermal 
surfaces and invariant solutions of boundary value 
problems of this equation is considered in detail. It 
was found that construction of these solutions is 
especially facilitated by a new treatment of heat transfer. 

The description of the process of non”stationa~ 
heat conduction with the migration of isothermal sur- 
faces allows one to apply the perturbation method 

to the solution of problems with tcmperaturc- 
dependent thermophysical properties. 

For instance, for a plate (m = l), hollow cylinder 
(m = 2) and hollow sphere (m = 3) (one-dimensional 
case) the problem of heat conduction with boundary 
conditions of the first kind in dimensionless form is 

ii(rr)x(x;)Zx: = 1(:(T).wx;,-P(7-)xx;. 

-(m-1)x(7’)(&)‘, t > 0, c1 < T< b (31) 

.Y(T,O) =f(T) (321 

X(7,=&T)= 1, r>O (33) 

x(T=h,z)= l+A, r>O, (34) 

where x(7’. Z) is the location of isothermal surfaces 
on which the temperature T = i&m is prescribed, 
z is the dimensionless time, c(T) and x(,“(T) are the 
temperature dependences of the relative values of 
volumetric heat capacity and thermal conductivity. 

It is easy to see that problem (31)-(34) corresponds 
to non-stationary heat conduction in the bodies men- 
tioned when the initial temperature distribution T 
along the coordinate x is assigned and on the bound- 
ing surfaces with the coordinates x = 1 and x = 1 + A 

constant values of tcmperaturc 61 and h, rcspectivcly. 
are maintained. 

Assume that the functions c(T) and L(T) have the 
form 

C(T) = 1+cC,(T), I(?-) = 1 -+-SK,(T), (35) 

where C,(T) and 1, (T) are limited within the section 
(a, h), and c and 6 are rather small. 

We seek the solution of problem (31)-(34) in the 
form 

Substitution of the functions c(T) and x((T) and of 
the series (36) into equation (31) yields 

Here Cz=, should be understood as Xy:,, cT_O, 
.ii, = ax,,pz, ,x:, = ax,,jn, xi) = S’s,,/dT and 

T, = i;a,jaT. 

Then, equating the terms with equal powers ~~6’ we 
obtain an infinite system of equations for dete~ining 
the unknown functions xij(T, z). For series (36) to 
satisfy problem (31)-(34) the following conditions 

must be valid : 

x( T, 0) = c xi, (T, O)E% = ,f’( T) (38) 
1,,= 0 

X(Q, T) = 5 Xi, (U, T)E’& = 1. z > 0 (39) 
,.,I 0 

x(b, T) = i xi, (b, T)E'd' = l-i- A, z > 0. (40) 
1.,= 0 

Assume that these conditions are fulfilled at 

X”,(T,O) =f’V), xi,(T,O) = 0 for ii-j> 1 

x0&, 7) = 1. .~,,(a, t) = 0 for i+.j B I 

-x&b, T) = I -t-A, x,(b,z) = 0 for i+j> 1. 

We determine the functions x0”, x0, and x,~. For .xoO 
there is the boundary value problem with the non- 
linear equation of the process : 

xoo(x~,,)~.~,, = XOOX~” - (m- I)(x;“)2 (41) 

x0(! =f’(T), 7 = 0 f42f 

x*&z) = 1, I > 0 (43) 
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x,,(b,t) = l+A, IF > 0, (44) 

coinciding with problem (31)-(34) at c(T) = 1, 
x(“cr) = 1 in the ordinary formulation when tem- 
perature T is a dependent variable and coordinate x 
and time r are independent variables. The cor- 
responding boundary value problem is linear and 
its analytical solution is derived in refs. [9, IO], with 
the use of which the unknown quantity x,,(T, 7) is 
obtained. 

The boundary value problem for determining x0, 
becomes linear : 

.q&bo)2io, +&o[xo,(rub,)* +2xoonchoxb,l 

= xoo.x;, +xo,x~o +I,xoo.xI;o -~,xoox~o 

-(m- 1)[2xb,.x6, +n,(~6~)~1 (45) 

x~,(r,o) = 0 (46) 

x,,(a,t)=O, r>o (47) 

x,,(6,r)=O, r>o. (38) 

The boundary value problem with respect to xtO is 
also linear : 

+ ~x,,x~~.x; J = x~~x’~~ - 2(m - I)x&x’,~ +x, ,,.x& 
(49) 

.x,,(T,O) = 0 (50) 

x,,(a,r) = 0, T > 0 (51) 

x,&r) = 0, T > 0. (52) 

The question of the convergence of the functional 
series (36) is unsolved because its solution requires 
the knowledge of exact estimates of the values of 
]x,( r, z)], thus making it a complex problem. 

If it is assumed that there exist positive constants 
A, B and M so that 

maxIxj,(r,r)] <AA’BJM, i,j= l,,,., 

a<T<b, O<s<t, (53) 

then it can be easily proved that at rather small E and 
S, series (36) converges and with accuracy up to an 
infinitely small quantity having order higher than 
s2+s6+6*, so that the solution of problem (31)-(34) 
may be presented in the form 

x(7;z) Z x,,+EX,O+bxgi. 

In fact, equations (36) and (53) yield 

(54) 

Series C,y= o](B~)]i)(AS)]i converges absolutely when 
]BE~ < 1, IAS/ <: 1. Then, from the comparison cri- 

terion and inequality (55) the proof of the advanced 
assumption is obtained. 

5. APPLICATION OF THE METHOD OF FINITE 
DIFFERENCES 

The difficulties of constructing effective methods 
for computer solution of the problem with substance 
phase transition when the position of the interface 
between old and new phases is found from the Stefan 
conditions are well known. Moreover, when solving 
the problems without phase transition by computer 
a substantiai portion of time is spent on selecting 
thermophysical characteristics of the body material 
from the input arrays on each time layer. The latter 
confirmation is based on the results of control com- 
puter calculat~ons~ made by the author, of the problem 
of a non-stationary temperature field in an unbounded 
plate (one-dimensional case) in which the space step 
was taken to be equal to l/20 of the plate half-thick- 
ness and the time step amounted to AFo = 0.005. The 
initial temperature was assumed to be equal to zero 
and the temperature of the boundary during the entire 
process was taken to be equal to unity. The arrays of 
i, = a(T) and C = C(T) for values of T (with each 
value of T, I = 1, C = 1) were input to the memory 
of an ES-1050-type computer. Then the system of 20 
algebraic equations with respect to unknown tem- 
peratures at 20 body points on each time layer was 
solved which corresponds to the finite difference 
approximation by the implicit absolutely stable non- 
iterative Laasonen scheme. In this case, in the first 
version of the program the selection of thermo- 
physical properties from the input arrays with linear 
interpolation between the node values of i and C 
was envisaged, while in the second version this pro- 
cedure was not foreseen because the values of 1 and 
C were taken to be equal to unity in the corresponding 
equations of the above mentioned system. The cal- 
culations performed showed that the first case requires 
approximately 20% more computer time than the 
second. 

With the use of iterations when verifying thermo- 
physical properties at each time step the computer 
time spent increases in direct proportion to the num- 
bcr of iterations. 

It is necessary to note the fact that traditional 
methods of solving heat conduction problems yield a 
good deal of excess information in those cases when 
it is necessary only to follow the behaviour of some 
isothermal surfaces. 

Expensive computer time expenditure and accumu- 
lation of excess information when solving the prob- 
lems without substance phase transition may be 
avoided and, moreover, effective algorithms for solv- 
ing problems by computer with substance phase 
transition may be constructed by using the descrip- 
tion of the process with the migration of isothermal 
surfaces. 
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The difference scheme for computer solution of the 
above problems in a practically important case ofone- 
dimensional heat propagation over a plate (m = 1). 
cylinder (m = 2) and sphere (m = 3) when the equa- 
tion of the isothermal surface position variation 

T = idem with time z calculated from the centre of 

symmetry is 

(56) 

Furthermore, the coordinate x will be calculated from 
the surface bounding the body (Fig. 2). Then with 

the characteristic dimension I, (plate thickness, outer 
radius of solid or hollow cylinder. sphere). equation 
(56) takes the form 

^ - 
C(T);;=;; -$$ + ~~~~ 

1'1 

(m-l)i(T) 

I,,-.~ 
(56’) 

Following ref. [I I], we integrate equation (56’) over 
the variable T within the limits from T,_ 1.2 = 
0.5(T,+T,_,) to T,+,.z = 0.5(T,+T,,.,) and over z 

from z(“) to t(“+ ‘I, where i is the spatial layer number 
and n is the temporal layer number : 

Then, we have, successively, for the left-hand side of 
equation (57) within the limits of a temporal layer 
with the duration of AZ = tCn+ ” -P’ : 

9 

C'(T) ;$I7 = 
*I ,, 

1 i C’( 7.)[.\-( 7: ?“# 1’) 
’ I’ 

-s( T, T”“)] dT 1 [x(7;. 7”‘+ “) 

-.~(T,,t”“)](T,+,~L-T, ~,‘z)C, 

= 0,5C,(.uj”~“-.uj”‘)(T,,, -T, ,), 

where 

s 

7 
C‘,= ‘_I2 

C(T) dTl(T,+ 1,2 - T, ,,A 
‘: 12 

If the last integral is not taken and an approximation 
is made following the rule of rectangles, we have 

c, z C(T,). 

Now consider the first integral from the right-hand 

side of equation (57) : 

l(T,- ,,.d(T,- T- I) 
T,~ , I 

= x(7, T,) --x(7, T, ,) 

n(r,+, ,)(T,+, -T,) 
= .ir;, T,, ,) -.x(7, T,) 

This yields, successively : 

P”“” i ,+,.z(T,+,-7;) ,_ 
Jr,,,, Tab ~ ~~~~~ “i. 

= C(T)[x(T,z’“+“)-.x(T,z’“))]; ~(7, T,, ,) -.x(7, T,) 

s 

““+‘) A,__ ,,2(T,-T,_Ld7 

p X(T, T,) -.x(7, T,_ , ) 
p+ I, 

I.,_ , 2 (Tz-T1- I) 
i pi _,(, T)_!S T_ ) > , 1 / I 

i /~ ,;,(T, - T, ,)(7(“+ ” -7”“) 
= &T7(J’l + fl(7(“+ ‘1 _ 7cn)), T,] 

-.W[7’“‘+0(7’“+ ” -7”7)). r, ,I. 

TN+l Ti+l T, Ti-1 

T 

FE. 2. Plot ot’.u as a function of T. 

s 

rlll+ii I 
lb,+ I, ,(T,+ I - T, _d7 

~~ ~~~ ~ p x(7, T, 1) -.x(7, T,) 
I 

Tl i bt+,,>(T,+, -T,)(7’“+“-7’“‘) =---_ 
x[z’” + Q(7(“+ ‘) - 7(“)), Ti+ ,] 

- x[z’“’ + H(z@+ ‘) - r(“‘), T,] 
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At 0 = 0 we obtain an explicit approximation of the (57) after elementary transformations by the explicit 
initial differential operator : approximation scheme yields 

,.@+ 1) __.p’ 

cikTL = 
2L ,,2(T - T,- I) 

(xl”’ -xl”),)(Ti+, - T,+ ,) 

and at 0 = 1 its implicit approximation : 

The last integral from equation (57) is calculated in 

the following way : 

5.2. Analysis of the stability of digitization schemes 

Computer solution of the finite difference analogue 
of equation (56’) with its approximation by explicit 

or implicit schemes is possible when stability of cal- 
culations is provided. This requires the establishment 

then with the approximation by the explicit scheme 
of such a ratio between the time steps AZ and tem- 

we have : perature AT at which the error of the method remains 

small during calculations. Determination of the con- 

s 

‘(“+” dr AZ dition of the stability for the equation under con- 

$4 I,-x x l,x’“‘o sideration by familiar methods [12] is very difficult 
due to its non-linearity. It can be shown that the 

and with the approximation by the implicit scheme : analysis of the solution scheme stability may also be 

J”+” dz 

s 

Ar 
performed in this case. 

&“) I,-x = lo -X(“f “(T) . 
In fact, consider equation (56’) at m = 1, C(T) = 

const., 1(T) = const. and replace x by u as in the 

Then we obtain, correspondingly, with the explicit majority of works on this problem. 

approximation scheme : Then we have 

s T ItI? At 

s 

T,+,,zi(T)dT C &(T, T) 8 1 a224 
A(T) ~ dT=As 

r,- II? I, - .P’ T,+,,, I,--x’“’ 
-PC-- - +;)~2a__TI, (61) 
1” ar 0 dT u; 

‘Freezing’ the multiplier (u;)- * on the right-hand side 
of equation (61) and denoting it in terms of D, we 

obtain 

If the last integral is replaced by 2.(TJ(Ti+ ,,2- Tip ,,*), 
then we have 1, = i(T,). As a result we obtain with As is known from ref. [12], the condition of explicit 

the explicit approximation : scheme stability for equation (62) is 

i AZ 
----i<iD or 

1 AZ 

C (AT) 
~ PI < ; (u;) 2. 
C (AT) 

(63) 

= WC,+ 1,2 - Ti- ,,Mo -x(‘? 
The finite difference analogue of the right-hand side 
of equation (63) may be obtained by transforming 

and with the implicit approximation : equation (61) in the following way : 

jT;;-'k(T) j::"dr,(&,-x)]dT 
c &C 1) _ &’ 

1 Ar’“’ I- = - 
T - r, 
&& 

z l<Az(T,+ ,,2 - T,+ ,,2)/(10-~(n+ I’). (58) T, I T _ ~~_ 
Substitution of all of the results obtained in equation > 

2 

ui”)-ul”‘, T;+,-Tim, 

24, ,,2V~+ I -T,) 
(xl:’ 1 -xl”‘Wi+ I -r,- I) 

+$$ (59) 
o in 

and approximation by the implicit scheme gives 

Ci 
xy+ 1) _ x(“) 2L ,,Oi-- T,- 1) 

At , (x(n+ 1) -xjl:“)(T,+, -T,m ,) 

24, ,.‘O,+ I -T) 
- (xl;: ‘I-xy+ “)(T;+, - T,+ ,) 

cm- 114 (60) 

+ [,_x)“+ 1) 



300‘4 N. M. TSIKFLMA~ 

In equation (64) the co-factors 

ui+ I (11) _ z,y ,?I _ u’“’ 1 
__-- x I--L! 
T ,+I - r, 7-,--T,- I ) 

are the finite difference analogues of a”u/iiT’ and 
(a;.> _ ’ = D in equation (6 I). 

Then, based on equation (63) and the con- 
siderations made, we obtain the following condition 
of explicit scheme stability for equation (62) and, 
consequently, equation (61) : 

’ A@) < irnin (T;, , 
c 

-T,)’ 

With the temperature-dependent thermophysical 
properties, condition (65) takes the form 

A@ < 12 Tyrnin (T,, , -T,)’ 
“1dX I 

where C,, and ;Imax are the minimum bulk heat 
capacity and the maximum thermal conductivity 
within the range of temperatures on the nth time step. 

It is easy to see that condition (66) imposed on the 
time is very ‘rigorous’ though it guarantees stability 
of calculations by the explicit scheme. 

A less burdensome condition imposed on the quan- 
tity Ac\z(“) may be obtained by applying the maximum 
principle to equation (59), written in the form 

_ 

Let 6~~) be some variation of ui on the nth time layer. 

By ‘freezing’ ai”‘, WC obtain the following equation 
for &jn+ ” : 

I 

and 

or 

lnequation(67),8, >O,jJJ >Oandfi,+B+p,= 1. 
To the stability condition of the solution of equation 
(67), fi2 2 0, there is equivalently the fulfilment of the 
inequality 

With temperature-dependent 1 and C, condition (68) 
takes the form 

Similarly, by applying the maximum principle to the 
analysis of the implicit scheme (60) we obtain its 
absolute stability at any AZ to AT ratio. 

5.3. Computer realization of the method 
The determination of the Ar to AT ratio at each 

time step, which provides the stability of the solution 
by the explicit scheme (59), could cover the problems 
of its computer realization if the right-hand side of 
equation (59) were divergent. It is non-divergent due 
to the presence of (56) on the right-hand side of (59) 
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of the sum (m - 1)1( T)/T, thus leading to inaccurate 
results [ll]. 

The computer solution of the system of equations 
by the implicit scheme does not show the principle 
restrictions imposed on the relationship between the 
steps A.z and AT but there arise difficulties due to the 
non-linear character of (60). 

With computer calculation the first of the above 
difficulties is overcome by the application of the split 
of equation (56), when on each time layer the equa- 
tions 

C(T)g;=;T _32_ 1 1 ax/ar 

C(7) d-” = (m- l)K0 
az I,-X 

(69) 

are solved successively using finite differences. The 
latter equation may be rewritten in divergent form : 

.(,)!!A?~~~~ = _qm_ 1)2(T). (71) 

In the differential form with the value of the time half- 
layer Ar, equations (69) and (71) become 

The operator on the right-hand side of equation (72) 
is given in Section 5.1. 

The sequence of computer calculations on each time 
layer is the following : solve the system of equations 
concerned with digitization of equation (72), find 
x~+“*’ (i=N, N-l,...,l) and then determine 
XI”+ ” explicitly from equation (73) using the formula 

$+” = ~,-[(~o-~f”+‘~2’)2-2~~(~-l)Az~Ci]”2~ 

(74) 

Here, the minus sign in front of the square root is due 
to the fact that xy+ ‘I*’ < I, and for AZ + 0 we should 
have x$“+ ‘) = x!“+ “*‘. The system of non-linear equa- 
tions (72), expressed in the form 

(+?l’ ‘Pi -xl”‘>(xl”+ ‘12’ -xl”=1’!2)(xi”_: ‘12) _,x(,+ ‘12)) 

-&ill; ‘/2) __$‘+ l/Z’) + b (X!n+ ‘in 1 I -xl;: “2)) = 0, 

(75) 

where 

is solved by the Newton-Raphson iterative method, 
characterized by rapid convergence of approxi- 
mations [12]. 

In this case it is closed by a difference analogue of 
the boundary conditions, 

a T.-T,,, 

N+ l/2 
--___ 

x$+ 1) 
+c((“+ ‘)(T,+,+ , _ Tr”+ 1’) = q’“+ 1) 

(76) 

in which with the assignment of boundary conditions 
of the first kind, the temperature TN-)_, of the body 
bounding surface with the coordinate x,, ’ = 0 (Fig. 
2) coincides with the prescribed function 7’?+ ‘), since 
the coefficient of convective heat transfer is assumed 
to be infinitely large (e(“+ ” + co) ; with boundary 
conditions of the second kind, we have a’“+ ‘) = 0 and 
the density of the heat flux q’“’ ‘) into the body bound- 
ing surface is known ; in the case of boundary con- 
ditions of the third kind, Al’“+ ” and the surrounding 
medium temperature T:“+‘) are known and q(“+” is 
assumed to be equal to zero. 

The initial distribution of the unknown quantity 
xi*’ should be known. In the case of uniform initial 
temperature distribution it should be prescribed arti- 
ficially as non-uniform in a thin layer adjacent to the 
body bounding surface, for example, by a quadratic 
parabola. When solving a two-phase Stefan problem 
on body melting or solidification the initial tem- 
perature distribution in the parent phase should be 
known and if at the start of calculation there is already 
a melted or solidified layer then the initial distribution 
should be prescribed in it. 

By using the above algorithm, programs for cal- 
culating temperature fields in bodies with and without 
phase transition of substance were created. Figure 3 
gives a schematic diagram of the calculation program 
using the implicit scheme of digitization of differential 
operators in equation (56’). In the modulus of the 
program, bifurcations were allowed by the criterion 
of the presence or absence of phase transition and 
within each bifurcation calculations on a half-line or 
on a segment were separated. 

The program was initially tested when solving a 
number of model problems of non-stationary heat 
conduction in a plate, cylinder and sphere and in a 
half-space without phase transition of the substance 
with boundary conditions of first, second and third 
order. 

In this case computational data with the shift of 
isothermal surfaces fully corresponded to the data 
obtained by the grid method in the traditional treat- 
ment of the process as spatial-temporal temperature 
variation. On a half-line the data of numerical 
CalcuIations at C= 1, ~=(l-0.8T))Z, A= 
(1 - 3.2927T+2.877T2)-’ completely coincided with 
Fujita’s accurate solutions [lo]. 

For a case with substance phase transition the 
known model problem of melting in a half-space was 
solved on a computer. The initial temperature of the 
solid phase was taken to be T$yj = - I, the phase 
transition temperature was - T, = 0 and the bound- 
ing surface temperature was assumed as TN+ 1 = 1. 
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FIG. 3. Schematic diagram of the program of thermal calculation in the rnjgratjon of isotherms. 

Thermophysical properties in the material solid phase 
are Cz = I, Lz = 5 and in the liquid phase C, = 20, 
ii, = 1. Moreover, the ratio of bulk heat phase tran- 
sition, L. to specific heat of a solid phase was taken 
as L/C, = 0.2. 

The coordinates ~j’+ ‘) of the phase interface and 
the dimensionless coordinates .I+$“,+ ‘)/.$“+ ‘) for tem- 
peratures 0.1, 0.2,. . . , 1.0 in the new phase and 
x~:~‘)/x~+ ‘) for temperatures - 1.0, -0.9,. , -0.1 
in the old phase were printed. 

A good agreement between the results calculated 
by the implicit scheme of the described two-phase 
Stefan problem and the data of the accurate solution 
[13] (Fig. 4) indicates the efficiency of the developed 
method (the difference between the values of x5, 
x I,i/.~,, ,uz,,/x, and accurate ones did not exceed 3% 
though this cannot be explained by the fact that in 
our algorithm free convection in a liquid phase was 
not taken into account}. 

Then the model Stefan problem of half-space sol- 

idification at i = C = L = 1, when the initial tem- 
perature field in a new phase is described by a dis- 

T2,r =-1.0 ' II 

0 0.4 0.6 1.2 1.6 2.0 2.4 

~~~+l)/~~(~+i) 
I 

Fw. 4. Exact (solid line) and numerical (dashed line) solu- 
tions of the model Stefan problem for boundary conditions 

of the first kind. 

tributionof the type T$,” = exp(-x)-exp(--h) (his 
the new phase thickness at z = 0) and the temperature 
of substance phase transition and power of volumetric 
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heat release sources are equal to zero, was solved on 
a computer using the developed method. 

In this case it is assumed that solidification occurs 
with fixed heat removal from the outer surface of a 
new phase into the surrounding medium (boundary 
conditions of the second kind) and from the zone 
of phase transition into the old phase, respectively, 
according to the formulae 

3. 

4. 

5. 

qLZo=expr, qll,+o=exp(-b)-l. 6. 

The data of numerical calculation coincided with 
the known exact solution for temperature distribution 
and location of the phase interface, which have the 
form 

T(” = exp(-x+r)-exp(-b), x I = b+z. 

It should be noted that the duration of numerical 
calculations of the Stefan-type problems by the 
developed technique using the implicit scheme turned 
out to be two orders smaller than those in the familiar 
methods of phase interface ‘catching’ into the grid 
node, ‘straightening’ of boundaries, etc. [14-211. This 
allows one to make a great number of variant solu- 
tions of casting solidification. The latter point is also 
important in numerical study of the processes of sub- 
stance phase transition of great duration in a real time 
scale. 
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9. 
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13. 

14. 

6. CONCLUSION 
15. 

Consideration of the process of non-stationary heat 
conduction in the migration of isothermal surfaces 
made it possible not only to determine its new regu- 
larities and specific features but also to develop effec- 
tive techniques for numerical-analytical determina- 
tion of temperature fields in solid bodies as well as 
the location of the boundary between new and old 
phases during their melting or solidification. 
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METHODE DE LA MIGRATION DES ISOTHERMES DANS L’ETUDE DU TRANSFERT 
DE CHALEUR ET DE MASSE EN THEORIE ET EN PRATIQUE-II. 

DETERMINATION NUMERIQUE-ANALYTIQUE DES CHAMPS DE TEMPERATURE 

R&sum&L’Cquation de la conduction thermique variable dans les corps solides, une nouvelle equation de 
la physique mathematique, est trouvee pour un cas multidimensionnel de migration des surfaces isothermes. 
On donne l’analyse de l’existence et de l’unicite de la solution du probltme. L’application de la methode 
des perturbations, dans la description cintmatique de la conduction thermique. a la solution du probleme 
est faite avec des proprietes thermophysiques d&pendant de la temperature. L’approximation par difference 
finie de l’equation nouvelle est trot&e et on justifie la condition de stabilite. En utilisant ces schtmas, on 
developpe un algorithme pour determiner par ordinateur les champs de temperature et la localisation de 

l’interface entre nouvelle et vieille phases. 



DAS VERF.AFiREN DER ISOTHERMENWANDERIJNC IN THEORIE UND PRAXIS 
DER WARME- UND STOFFTRANSPORTIJNTERSIJCHUNG-II. NUMERISCII 

ANALYTIS<‘HE BESTIhlMIING VON TEMPERATURI:ELDERN 

Zusammenfassung- Die grundlcgende Glcichung fiir den Vorgane der nichtatationaren W2rmcleituny m 
Festkerpern-eine neue Glcichung der mathcmatischen Physik-wird fiir einen mehrdimensionalen Fall 
der Wanderung isothcmmer ObcrIl&zhen gefunden. Die Esistcnz und die Eindeutigkeit dcr Losung des crsten 
Randwertproblems fiir die obigc Glcichung wird gcxigt. Das Verfahrcn dcr Stiirungcn der kincmatischen 
Beschreibung der W2rmelcitung wird bci der Liisung des Problems mit tcmperaturbh~ngigzn ther- 
mophysikalischen Stolreigcnschatien angcwandt. C\ wlrd die FiniteDifferenrcn-Naherung dcr neuen Wiir- 
meleitgleichun~ durch Randmcrte und explizite Formulierung ermittclt und einc Stabilit&bcdingung 
fiir Ietztere hcrgclcitct. Untcr Verwendung dicser Formulierung wlrd der Algorithmus abgclcitet. urn 
Temperaturfelder und den Ort der GrenTfdche zwischen neuen und alten Phascn mit Hilfc tines Computers 

ermitteln zu kiinnen. 

MET04 HEPEMEUEHMR kl30TEPM B TEOPMM M HPAKTMKE 
TEI-IJIOMACCOI-IEPEHOCA. II. gklCJIEHHO-AHAJIMTHYECKOE OI-IPEQEJIEHME 

TEMnEPATYPHbIX nOnEn 

AHUOTaqHR-YCT,HOB,eHO ypaBHeHHC npOL,eCCa HeCTa~HOHapHOi%Te"AO~pOBOAHOCTH B TBepAbIx TC,lax 

QJ~W MHoroMepHoro cnyvan 6 nepeMeweHkiax MsoTepMHqecxux IIoBepxHocTeir-Hoeoe ypaenewie MaTe- 

MaTH’ECKOti @i3HKAAAaH aHaJIA3 CyUteCTBOBaHkiSi lieAHHCTBeHHOCTHpeL"eHAX IlepBOiiKpaeBOfi 3aAIaYA 

AJIS HeTO. nOKa3aHO BCtIOJIb30DaHNe MeTOAa BO3MyIUeHHfi IIpki KHHeMaTA',eCKOM OIIHCBHHII IlpOIJeCCa 

TCItJtOtIpOBOAHOCTH A."K IIOJly'feHIiK pC"IeHHn 3aAa'i C 3BBHCRUIUMB OT TeMIIepaTypbl TeIIJIO+H3H'IeC- 

KHMUCBOkTBaMH CpCAbLYCTaHOBAeHa KOHC'LHO-pa3HOCTHafl aIII‘pOKC,,MaLWK HOBOrO ypi?,BHeHllR TC"- 

JIOiIpOBOAHOCTU II0 KpaeBOti H SlBHOii CXCMaM Ii 060CHOBaHO YCJIOBW YCTOfi’IHBOCTF, IIOCJle~Hefi. C IIX 

ACnOnb30BaHACM pa3pa60TaH iIJIrOpE%TM OnpeAeAeHH8 Ha 3BM TeMnepaTypHbIX nOJIeti li MeCTOmOnO- 


